Physiological and neuroendocrine responses to chronic variable stress in male California mice (Peromyscus californicus): influence of social environment and paternal state

Abstract

Social environment and parental state affect stress responses in mammals, but their impact may depend on the social and reproductive strategy of the species. The influences of cohabitation with a male or female conspecific, and the birth of offspring, on the physiological and endocrine responses to chronic variable stress were studied in the monogamous and biparental California mouse (Peromyscus californicus). Adult male California mice were housed either with a male cage mate (virgin males, VM), a female cage mate (pair-bonded males, PBM), or a female cage mate and their first newborn litter (new fathers, NF). VM, PBM and NF underwent a 7-day chronic variable stress paradigm (CVS, three stressors per day at semi-random times, n=7-8 per housing condition). Compared to control males (CON, n=6-7 per housing condition), CVS caused loss of body mass, increased basal plasma corticosterone concentrations, and increased basal expression of arginine vasopressin (AVP) mRNA in the paraventricular nucleus of the hypothalamus (PVN). These effects were independent of housing condition. Neither CVS nor housing condition altered novel-stressor-induced corticosterone release, spleen or testis mass, or basal expression of corticotropin-releasing hormone (CRH) mRNA in the PVN. Although CVS appeared to increase adrenal mass and reduce thymus mass specifically in NF, these effects were explained by the lower adrenal mass and higher thymus mass of NF compared to PBM and VM under control conditions. These results suggest that neither engaging in a pair bond nor becoming a father attenuates typical responses to CVS, but that fatherhood may provide a buffer against transient mild stressors (i.e., weighing and blood sampling in the control groups) in this monogamous and biparental rodent.

Publication
Psychoneuroendocrinology
Click the Cite button above to demo the feature to enable visitors to import publication metadata into their reference management software.
Breanna Harris, Ph.D.
Breanna Harris, Ph.D.
Assistant Professor

I am a behavioral endocrinologist studying how organisms physiologically and behaviorally respond to and cope with challenges (stressors).