Stressor exposure affects food intake as well as the preference for high or low palatability foods, but little is known about how stressor types impact the visual attention to food images. We used eye tracking methodology in humans to determine if activation of the hypothalamus-pituitary-adrenal (HPA) axis and sympathetic nervous system is associated with changes in attention to food images as determined by measuring changes in oculomotor activity. Specifically, we tested two questions, 1) Do categorically distinct stressors alter aspects of visual attention to food images as determined by oculomotor activity (i.e., saccade latency, gaze duration, and saccade bouts)? 2) Do categorically distinct stressors differentially affect visual attention to food images of high or low palatability? A total of sixty participants were randomly divided into one of three test groups, controls, an anticipatory stressor group, or a reactive stressor group. We measured salivary cortisol and salivary alpha-amylase (sAA) before and after stressor exposure to confirm activation of the HPA axis and sympathetic nervous system, respectively. Following stressor exposure participants performed an eye-tracking test using a standardized food picture database (Food-pics). We analyzed saccade latency, gaze duration, and saccade bouts in balanced pairs of food and non-food images. Salivary cortisol was elevated by both stressors, although the elevation in salivary cortisol to the reactive stressor was driven by women only. sAA was elevated only by the anticipatory stressor. There were main effects of image type for all three eye-tracking variables, with initial saccades of shorter latency to food images and longer gaze duration and more saccade bouts with food images. Participants exposed to the reactive stressor reduced gaze duration on food images relative to controls, and this affect was not linked to palatability or salivary cortisol levels. We conclude that the reactive stressor decreased time spent looking at food, but not non-food, images. These data are partly consistent with the idea that reactive stressors reduce attention to non-critical visual signals.